Determination of ω-3 fatty acids by 1H and 13C NMR spectroscopy

1H- and 13C NMR spectra are sensitive for chemical structures, different subgroups of similar chemical surroundings are separated in regions of similar chemical shifts (see Fig. 1).

Any common fatty acid consists of a terminal methyl group. Saturated and unsaturated fatty acids show different chemical shifts of these methyl groups. The difference in the chemical shift depends on the distance between the terminal methyl group and the position of the next double bond.

In comparison to the chemical shift of a saturated fatty acid ω-3 fatty acids show a downfield shift od approx. 0.1 ppm and therefor it is baseline separated from all other fatty acid terminal methyl groups. A differentiation of ω-6 and ω-9 fatty acids is not so easy (see Fig. 2).

Total measuring Time: 1H NMR approx. 2 minutes, 13C NMR approx. 25 minutes 100 mg sample needed, the method is non-destructible!
Fig. 1: 1H NMR spectrum of a vegetable TAG
Fig. 2: Separation of ω-3 from ω-6, ω-9 and saturated fatty acids in 1H NMR
Fig. 3: Separation of ω-3 from ω-6, ω-9 and saturated fatty acids in 1H NMR, comparison of TAG and Phospholipids from krill oil after preparative separation. The neutral lipids fraction contains the branched phytanic acid which also can be quantified.
Fig. 4: Total ω-3 consists mainly of EPA and DHA. Other regions of chemical shift enable the simultaneously detection of these types. The 1H NMR spectrum belong to salmon oil.
Fig. 5: 13C NMR spectroscopy enables a chromatography-like presentation, this spectrum belongs to salmon oil and refers to the terminal methyl groups. The data evaluation is more detailed compared to 1H NMR spectroscopy. Even ω-7 fatty acids can be summarized.
Fig. 6: analysis of the methylene groups (n-2); in addition a separated EPA from DHA is possible.
Fig. 7: 13C NMR of the carbonyl signals enable a selective analysis of the different Δ types of fatty acids, DHA is a Δ-4 and EPA a Δ-5 fatty acid.
Fig. 8: Since NMR is a non-destructive method even the simultaneous detection of free fatty acids (left part) and its alkyl esters (right part) is possible from any mixture. EPA and DHA amounts can be summarized easily to the total values.
Fig. 9: The observation of EPA and DHA amounts of fatty ester mixtures can be detected on the ester group, too. The spectrum belongs to the ethyl ester (-CO-O-CH$_2$-CH$_3$).